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Abstract

We present a new method for proving strong lower bounds in communication complexity. This method is
based on the notion of the conditional information complexity of a function which is the minimum amount
of information about the inputs that has to be revealed by a communication protocol for the function.
While conditional information complexity is a lower bound on communication complexity, we show that it
also admits a direct sum theorem. Direct sum decomposition reduces our task to that of proving conditional
information complexity lower bounds for simple problems (such as the AND of two bits). For the latter, we
develop novel techniques based on Hellinger distance and its generalizations.

Our paradigm leads to two main results:

(1) An improved lower bound for the multi-party set-disjointness problem in the general communication
complexity model, and a nearly optimal lower bound in the one-way communication model. As a
consequence, we show that for any real k>2, approximating the kth frequency moment in the data stream
model requires essentially Q(n'~2/%) space; this resolves a conjecture of Alon et al. (J. Comput. System Sci.
58(1) (1999) 137).

(2) A lower bound for the L, approximation problem in the general communication model; this solves an
open problem of Saks and Sun (in: Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC), 2002, pp. 360-369). As a consequence, we show that for p>2, approximating the L,
norm to within a factor of #° in the data stream model with constant number of passes requires Q(n!~*~2/7)

space.
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1. Introduction

Alice and Bob are given a bit each and they wish to compute the AND of their bits by
exchanging messages that reveal as little information about their bits as possible. In this paper we
address problems of this kind, where we study the amount of information revealed in a
communication protocol. Our investigations lead to a new lower bound method in communica-
tion complexity.

Communication complexity [Yao79] quantifies the amount of communication required among
two or more players to compute a function, where each player holds only a portion of the
function’s input. This framework has been used to solve a variety of problems in diverse areas,
ranging from circuit complexity and time-space tradeoffs to pseudorandomness—see [KN97].
Some recent applications of communication complexity arise in the areas of massive data
set algorithms (see below) and in the design of combinatorial auctions [NSO1].

A computation model that has been very useful for designing efficient algorithms for massive
data sets is the data stream model. A data stream algorithm makes a few passes (usually one) over
its input and is charged for the amount of read—write workspace it uses. Using randomization and
approximation, space-efficient data stream algorithms have been developed for many problems
[AMS99,FKSV02,GMMO00,Ind00,GGI + 02,AJKS02]. The data stream model generalizes the
restrictive read-once oblivious branching program model for which strong lower bounds are
known [Bry86,Weg87]; however, since data stream algorithms are allowed to be both probabilistic
and approximate, proving space lower bounds for natural problems is challenging.

Communication complexity offers a framework in which one can obtain non-trivial space lower
bounds for data stream algorithms. The relationship between communication complexity and the
data stream model is natural—the workspace of the data stream algorithm corresponds to the
amount of communication in a suitable communication protocol. Lower bounds for data stream
algorithms have been shown both via generalization of existing methods (e.g., [AMS99]) and by
the invention of new techniques (e.g., [SS02]).

1.1. Results

We develop a novel and powerful method for obtaining lower bounds for randomized
communication complexity. We use this method to derive lower bounds for communication
complexity problems arising in the data stream context.

(1) In the multi-party set-disjointness problem DISJ, ;, there are ¢ players and each player is given
a subset of [n] with the following promise: either the sets are pairwise disjoint (No instances) or
they have a unique common element but are otherwise disjoint (YES instances). We show that the
randomized communication complexity of this problem is Q(n/#?). Previously, Alon et al.
[AMS99] had proved an Q(n/t*) bound, extending the Q(n) bound for two-party set-disjointness
[KS92,Raz92]. The best upper bound for this problem in the one-way communication model is
O(n/t) [CKSO03]. In the one-way model (where each player sends exactly one message to the next
player) we show a nearly optimal lower bound of Q(n/t*?) for arbitrarily small e.

Our lower bound result in the one-way model implies the following: we obtain the first super-
logarithmic (in fact, (")) space lower bounds for approximating the kth frequency moment Fj
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for any real k>2 in the data stream model.? This resolves the conjecture of Alon et al. [AMS99],
who showed an Q(n' /%) lower bound for constant factor approximation of Fi, k>5. We show
that approximating Fj, k>2, to within constant factors requires Q(n'~*")/*) space, for any
constant y>0. For k> 2, the best known space upper bound for F; is O(n'~'/¥) [AMS99]. Since
our lower bound is essentially optimal for the one-way model, closing this gap would require
either a better algorithm or a different lower bound method for the frequency moment problem.
Similarly, using the lower bound in the general communication model, we show that any data
stream algorithm for approximating Fy that makes a constant number of passes requires Q(n'~3/¥)
space.

(2) In the L, promise problem, Alice and Bob are given integers x,ye [0, m]", respectively. The
promise is that either |x —y| , <1 (YEs instances) or |x —y|., =>m (No instances). We show that
the randomized communication complexity of this problem is Q(n/m?). This solves the open
problem of Saks and Sun [SS02], who showed this bound for the restricted one-way model.

A consequence of this result is a lower bound for approximating L, distances for p>2:
approximating the L, distance between n-dimensional vectors to within a factor of »n® requires
Q(n'~*-2/7) space in the data stream model for any constant number of passes over the input.
This bound is optimal for p = co. The communication complexity lower bound of [SS02] gives a
similar bound for the one-pass data stream model.

1.2. Methodology

Our method proceeds by first decomposing the original function into simpler ““primitive”
functions, together with an appropriate “composer” function. For example, the two-party set-
disjointness function can be written in terms of n two-bit AND functions, one for each coordinate.
By computing each AND function separately, we trivially obtain a protocol to compute
disjointness. The direct sum question for communication protocols [KRW95] asks whether there
is a protocol with considerably less communication. We consider a related question, namely, the
direct sum property for the information content of the transcripts of the protocol. We formalize
this idea through the notion of information cost of a communication protocol, which measures the
amount of information revealed by the transcript about the inputs. The information complexity of
a function is the minimum information cost incurred by any protocol that computes the function;
this measure is a lower bound on the communication complexity of a function. This concept was
recently introduced by Chakrabarti et al. [CSWYO01] in the context of simultaneous messages
communication complexity; it is also implicit in the works of Ablayev [Abl96] and Saks and Sun
[SS02] (see also [BCKO93]). We give an appropriate generalization of information complexity for
general communication models; the highlight of our generalization is that it admits a direct sum
theorem. Thus, any correct protocol for disjointness must reveal in its transcript enough
information to compute each of the constituent AND functions. This reduces our task to proving
lower bounds for the AND function.

2For a finite sequence a = a,, as, ..., where each element belongs to [n], and for je[n], let f;(a) denote the number of
times j occurs in a. The kth frequency moment Fy(a) is defined as Zje[n]j]'-k(a).
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In carrying out an information complexity lower bound, we would like to create an input
distribution that is intuitively hard for any communication protocol. It turns out that for many
natural examples, these distributions necessarily have a non-product structure. This is one of the
main obstacles to extending the direct sum methodology of [CSWYO01] to general communication
protocols; their work addresses the more restrictive case of simultaneous message protocols. In
the proof technique of [SS02], the issue of such non-product distributions causes significant
complications; they resolve this difficulty for the one-way model by using tools from information
theory and Fourier analysis. We approach this problem by expressing the non-product distribution
as a convex combination of product distributions; this approach has been previously considered for
other problems such as the distributional complexity of set-disjointness [Raz92] and the parallel
repetition theorem [Raz98]. The novelty of our method lies in extending the definition of
information complexity to allow conditioning so that it admits a direct sum decomposition.

The direct sum theorem reduces our task to proving information complexity lower bounds for
primitive (single coordinate) functions. Existing methods for communication complexity seem
unsuitable for this task, since randomized protocols can use many bits of communication but
reveal little information about their inputs. Our solution is based on considering probability
distributions induced on transcripts, and relating these distributions via several statistical distance
measures. In particular, the Hellinger distance [LY90], extensively studied in statistical decision
theory, plays a crucial role in the proofs. We derive new properties of the Hellinger distance
between distributions arising in communication complexity. In particular, we show that it satisfies
a ‘“‘cut-and-paste” property and an appropriate Pythagorean inequality; these are crucial to the
proofs of the one-coordinate lower bounds.

Our result for the multi-party set-disjointness in the general communication complexity model
is not tight. This is due to a limitation in our proof technique and can be attributed to the fact that
the square of the Hellinger distance satisfies only a weak form of triangle inequality. This leads us
to consider generalizations of the Hellinger distance, which, combined with the Markovian
structure of one-way protocols, allows us to derive near-triangle inequalities. To the best of our
knowledge, this is the first proof technique for multi-party one-way protocols—a model
particularly relevant to data stream computations.

Related developments. By using the direct sum paradigm of this work, together with sharper
analytical methods to obtain information complexity lower bounds for “primitive” functions,
Chakrabarti et al. [CKS03] have obtained essentially optimal bounds for the communication
complexity of the multi-party set-disjointness problem in the general and one-way communication
models. Jayram (unpublished work, 2003) has shown that the information complexity
methodology of this work yields lower bounds for distributional communication complexity as
well. Jayram et al. [JKS03] have extended the methods of this paper to obtain new separations
between non-deterministic/co-non-deterministic communication complexity and two-sided error
randomized communication complexity. Jain et al. [JRS03] have used the direct sum methodology
to obtain quantum communication complexity lower bounds for set-disjointness.

Organization. Section 2 contains the preliminaries. In Section 3, we derive the lower bounds for
data stream algorithms by applying the communication complexity lower bounds. In Section 4,
we introduce the notions of information complexity and conditional information complexity. In
Section 5, we present the direct sum theorem for conditional information complexity, and
illustrate it via the set-disjointness problem in the two-party (general) communication complexity



706 Z. Bar-Yossef et al. | Journal of Computer and System Sciences 68 (2004) 702—732

model. In Section 6, we describe the connection between communication complexity and
“information statistics,” a term that we coin to loosely describe the interplay between information
theory and distances between probability distributions. As an illustration of our techniques, we prove
an Q(1) lower bound on the information complexity of the AND of two bits. Section 7 deals with the
multi-party set-disjointness problem, and presents lower bounds in the general and one-way
communication models. Section 8 contains the communication lower bound for the L, promise
problem. Appendices A and B contain results about various statistical notions of divergences between
probability distributions that we use in the paper, including some technical lemmas that we prove.

2. Preliminaries

Communication complexity. In the two-party randomized communication complexity model
[Yao79] two computationally all-powerful probabilistic players, Alice and Bob, are required to
jointly compute a function f: % x % —%. Alice is given xe %, Bob is given ye%, and they
exchange messages according to a shared protocol II. For a fixed input pair (x,y), the random
variable I1(x, y) denotes the message transcript obtained when Alice and Bob follow the protocol
IT on inputs x and y (the probability is over the coins of Alice and Bob). A protocol I1 is called a
o-error protocol for f, if there exists a function I1,, such that for all input pairs (x,y),
Pr[ow(II(x,y)) = f(x,y)]=1 — 5. The communication cost of II, denoted by |I1|, is the maximum
length of I1(x, y) over all x, y, and over all random choices of Alice and Bob. The é-error randomized
communication complexity of f, denoted Rs(f ), is the cost of the best -error protocol for f.

Communication complexity can also deal with functions over a partial domain: f: ¥ > %,
L < x . In this case, we will assume that any protocol for f is well-defined for any input pair
(x,y), even if this pair does not belong to the domain . (This can be achieved by letting the
players transmit the special symbol ‘x’ and halt the protocol whenever they cannot continue
executing the protocol.) Also, without loss of generality, we will assume that the protocol always
produces transcripts of the same length.

The model can be easily generalized to handle an arbitrary number of players 7, who compute a
function f: 2| x --- x - %. Here, the ith player is given x;€%;, and the players exchange
messages according to some fixed protocol. A restricted model of communication is the one-way
communication model [PS84,Abl96,KNR99], in which the ith player sends exactly one message
throughout the protocol to the (i 4+ 1)st player (we define 7 + 1 = 1). We denote the d-error one-
way communication complexity of f by Rs™(f).

All our lower bounds will be proved in the following stronger model: all messages are written on
a shared ‘“blackboard,” which is visible to all the players. In the one-way model, this is
tantamount to saying that the players write their messages in turn, from player 1 to player ¢, where
each message could depend on all previous messages written.

Notation. Throughout the paper we denote random variables in upper case, and vectors in
boldface. For a random variable X and a distribution v, we use X ~v to denote that X is
distributed according to v. Let X~ pu be a vector random variable. We say that u is a product
distribution if the components of X are mutually independent of each other. For example, the
distribution p = v* obtained by taking n independent copies of v is a product distribution. For a
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random variable @(z) on a set Q, we write @, to denote the distribution of @(z), i.e., ¢.(w) =
Pr[®(z) = w], for every e Q. We denote by [n] the set {1, ...,n}, and by [0, m] the set {0, ..., m}.
All logarithms are to the base 2.

Information theory. Let u be a distribution on a finite set Q and let X ~u. The entropy of X is
defined by

HX) =D p(w) logu(lw).
we

The conditional entropy of X given Y is
H(X|Y)=> H(X|Y=y)Pr[Y =)],
¥

where H(X | Y = y) is the entropy of the conditional distribution of X given the event {Y = y}.
The joint entropy of two random variables X and Y is the entropy of their joint distribution and is
denoted H(X, Y).

The mutual information between X and Y is [(X;Y)=H(X)-H(X|Y)=H(Y)—-H(Y | X).
The conditional mutual information between X and Y conditioned on Z is I(X;Y |Z) =
H(X | Z) — H(X | Y,Z). Equivalently, it can be defined as

I(X;Y[2)=> UX;Y|Z=2z)Pr[Z=1],
where I(X; Y | Z = z) is the mutual information between the conditional distributions of X and Y
given the event {Z = z}.
We use several basic properties of entropy and mutual information in the paper, which we
summarize below (proofs can be found in Chapter 2 of [CT91]).

Proposition 2.1 (Basic properties of entropy). Let X, Y be random variables.

. Af X takes on at most s values, then 0<H(X)<logs.

JI(X; Y)>0.

. Subadditivity: H(X, Y)<H(X) + H(Y); equality if and only if X and Y are independent.

. Subadditivity of conditional entropy: H(X, Y | Z)<H(X | Z) + H(Y | Z); equality if and only if
X and Y are independent conditioned on Z.

5. Data processing inequality: if random variables X and Z are conditionally independent given Y,

then 1(X; Y | 2)<1(X; Y).

AW N —

3. Data stream lower bounds
3.1. Frequency moments

Given a finite sequence of integers a = a;, ay, ... € [n], the frequency of je[n] is f; = |{i | a; = j}|.
For k>0, the kth frequency moment Fj(a) is defined as Z;l:]fjk.



708 Z. Bar-Yossef et al. | Journal of Computer and System Sciences 68 (2004) 702—732

For k = 2, Alon et al. [AMS99] presented a data stream algorithm that estimates F, to within a
multiplicative error of 1+ ¢ using space which is logarithmic in #» and polynomial in 1/¢. For k>2
their algorithms use space O~(nl‘1/ k) (and polynomial in 1/¢). They also showed that
approximating Fj to within constant factors requires space Q(n'~¥/*) in the data stream model.
This implies that for k> 5, approximating Fj requires polynomial space.

We show that approximating Fj requires space Q(n'~*")/%) for arbitrarily small y>0. This
shows that for any k> 2, approximating Fj requires polynomial space, affirming a conjecture of
Alon et al. In order to prove the space lower bound we will adapt the reduction of [AMS99] to our
case.

Theorem 3.1. For any k> 2 and y >0, any (one-pass) data stream algorithm that approximates Fj, to
within a constant factor with probability at least 3/4 requires Q(n'=*)/k) space. For the same

problem, any data stream algorithm that makes a constant number of passes requires Q(n'=3/%)
space.

Proof. Let o/ be an s-space data stream algorithm that approximates Fj to within 1+e
multiplicative error with confidence 1 — 6, where 0 <d<1/4. We use .o/ to construct a é-error one-
way protocol for pisy,,, where t = ((1 + 3¢)n) /",

Recall that the inputs of DIsJ,, are ¢ subsets S, ..., S; < [n] with the following promise:

No instances: for i#j, $;nS; = 0;

YEs instances: there exists x € [n] such that for all i#j, S;nS; = {x}.

The sets translate into a data stream in the following way: first all the elements of Sy, then all
the elements of S,, and so forth.

The protocol for DIsy,; simulates the algorithm .o# as follows: the first player starts the
execution by running .7 on the elements of S;. When .«7 has finished processing all elements of Sy,
she transmits the content of the memory of .7 (O(s) bits) to the second player. The second player
resumes the execution of .o/ on her part of the stream (the elements of S,) and sends the memory
of .o/ to the third player. At the end of the execution, Player ¢ obtains B, the output of .. If
B< (1 + ¢)n, then Player ¢ sends to Player 7+ 1 the bit “0” (meaning the sets are disjoint) and
otherwise, she sends the bit ““1”” (meaning the sets intersect).

Clearly, the protocol is one-way. We next prove that the bit Player ¢ sends to Player ¢+ 1 is
indeed DIsJ,, ; with probability at least 1 — 0. If the input sets are disjoint, then each element has a
frequency of at most one in the stream, and therefore F is at most #. On the other hand, if the sets
are uniquely intersecting, then there is at least one element whose frequency is ¢, and therefore Fj
is at least ¥ = (1 + 3¢)n. Since .o/ produces an answer B that, with probability at least 1 — 9, is in
the interval ((1 —¢)Fg, (1 + ¢)Fy), it follows that if the sets are disjoint, with probability 1 — 9,
B<n(1 +¢), and if the sets are uniquely intersecting, then with probability 1 — o, B> (1 —¢)(1 +
3e)n> (1 4 &)n. Thus, our protocol is correct on any input with probability at least 1 — 0.

We next derive a lower bound on s. Note that the protocol uses O(s(t — 1) + 1) = O(st) bits of
communication. By Theorem 7.1, part (2), this communication is at least Q(n/t'*7) =
Q(n'~U0+7)/k) Therefore, s = Q(n'~+)/k),

The proof for a constant number of passes is similar. The main difference is that now we use an
/-pass s-space data stream algorithm .o/ for Fj to construct a ¢-player multi-round protocol for
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DISJ, ;. In the end of each pass, the last player sends the content of the memory back to the first
player. Thus the total communication is at most /st. Here we use the lower bound for the general
communication complexity of DISJ,, (Theorem 7.1, part (1)) to derive the data stream space lower
bound. O

3.2. L, distances

Theorem 3.2. For any p>0 (including p = o) and for ¢ such that 0<8<% - ﬁ, any data stream

algorithm that makes a constant number of passes over its input and approximates the L, distance
between two vectors in [0,m]" to within a factor of n® with probability at least 3/4 requires
Q(n' %27 space.

Proof. Consider first the problem of approximating the L, distance between two vectors in the
communication complexity model. That is, Alice is given x€[0,m]" and Bob is given ye [0, m]",
and they are required to find a value B s.t. (1/n°)||x —y||., <B<n’||x —y||,. Clearly, any
protocol to solve this problem is immediately a protocol to solve the L., promise problem for any
m>n*: distinguishing between the cases ||x —y||, <1 and [[x—y]||, =m. Therefore, by
Theorem 8.1, this problem requires 2(n'~*) communication.

We now translate this bound to the communication complexity of approximating the L,
distance. Using the relationship between norms, we have that

1 = ¥l <I1x = yll, <n'?llx =yl

or equivalently, the quantity n~!/P)||x — y| |, approximates ||x —y||,, to within a (multiplicative)

factor of n'/(??). Thus, approximating the L, norm to within a factor of »* implies an ntt1/p).
approximation to L.,. Using the lower bound for approximating the L., distance, we obtain an
Q(n'~*-2/P) communication lower bound for approximating the L, distance to within a factor of

Suppose there exists an s-space data stream algorithm with a constant number of passes that
approximates the L, distance to within a factor of n° with confidence 3/4. Similar to the proof of
Theorem 3.1, this yields a communication complexity protocol that approximates the L, distance
with the same approximation factor and the same confidence, and whose communication cost is

O(s). Thus, s = Q(n' =42y, O

4. Information complexity

In this section we define the fundamental notions of information measures associated with
communication protocols alluded to in the introduction. As the main illustration of our
definitions and techniques, we consider the two-party set-disjointness problem. We will continue
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the illustration in Sections 5 and 6, resulting in a simple proof of the Q(n) lower bound for the set-
disjointness problem.

Our lower bound method is built on an information-theoretic measure of communication
complexity, called information complexity, defined with respect to a given distribution over the
inputs to the function; our definitions generalize similar notions that were considered previously
[CSWY01,BCK093,Abl196,SS02]. The discussion that follows is in the framework of two-party
communication complexity; the generalization to an arbitrary number of players is straightfor-
ward.

Fix a set # = 2" x %" of legal inputs and a function f: # — {0, 1}.

In the set-disjointness problem, Alice and Bob hold, respectively, the characteristic vectors x
and y of two subsets of [n]. DISI(x,y) is defined to be 1 if and only if x "y 0.

Informally, information cost is the amount of information one can learn about the inputs from
the transcript of messages in a protocol on these inputs. Formally it is defined as follows:

Definition 4.1 (Information cost of a protocol). Let IT be a randomized protocol whose inputs
belong to #". Let u be a distribution on 4", and suppose (X, Y) ~ u. The information cost of I1 with
respect to u is defined as I(X, Y; I1(X,Y)).

Definition 4.2 (Information complexity of a function). The d-error information complexity of f
with respect to a distribution p, denoted IC,5(f ), is defined as the minimum information cost of
a o-error protocol for f with respect to p.

Proposition 4.3. For any distribution p and error 6>0, Rs(f )=1C,5(f ).

Proof. Let IT denote the best d-error protocol for f in terms of communication. Let (X, Y) ~ u. If
|II| denotes the length of the longest transcript produced by the protocol IT (on any input), then
we have:

Rs(f) = [HZHII(X, Y)) =1(X, Y; (X, Y)) =IC,s(f ). O

Suppose X <=Z x %, and suppose f: ¥"—{0,1} can be expressed in terms of a simpler
“primitive” h: ¥ — {0, 1} applied to each coordinate of the input pair (x,y). (This notion will be
formalized later; as an example, note that pisi(x,y) = V/;., (XiAy;), where the primitive / is the

AND of two bits.) If f depends symmetrically on the primitive in each coordinate, then we expect
that any protocol for f must implicitly solve each instance of the primitive /4. Further, if the
distribution u on #" is the product of independent copies of a distribution v on %, then one can
hope to show that IC, (/" )>n - IC, s(h)—a direct sum property for information complexity.
The main technical obstacle to proving this result is that the distribution u is not necessarily a
product distribution, i.e. if (X,Y)~g, then X and Y may not be independent. This is because v
need not be a product distribution on & x % (although u is the product of n copies of v). In fact,
for set-disjointness, it becomes essential to consider non-product distributions to obtain an Q(n)
lower bound [BFS86]. To handle this, we proceed as follows. Let 7 denote an auxiliary random
variable with domain .7, and let 5 denote the joint distribution of ((X,Y), T'). The choice of 7" will
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be made such that conditioned on 7', X and Y are independent. In this case, we say that # is a
mixture of product distributions.

In the above discussion, suppose v is non-product and u = v". Let (X, ¥)~v. We will define a
random variable D such that X and Y are independent, conditioned on D. Let { denote the joint
distribution of ((X, Y), D). It is clear that n = {" is a mixture of product distributions, whose
marginal distribution on %" is v" = p. A useful consequence is that if ((X,Y),D)~y, then the
coordinates {(X}, Y;)},}, are mutually independent of each other, and this continues to hold even

when conditioned on D.

For set-disjointness, we will use the non-product distribution v on the inputs given by
v(0,0) =1/2, v(0,1) =v(1,0) =1/4. Let D denote a random variable with uniform
distribution on {A,B}. If D = A, then let X =0 and let Y be a uniform element of {0, 1};
if D = B, then let Y = 0 and let X be a uniform element of {0, 1}. It is clear that conditioned
on D, X and Y are independent, and (X, Y)~v. Therefore, the joint distribution { of
((X,Y),D) is a mixture of product distributions.

Definition 4.4 (Conditional information cost). Let IT be a randomized protocol whose inputs
belong to # = 2" x #". Suppose ((X,Y), T)~n, and that n is a mixture of product distributions
on A x 7. The conditional information cost of II with respect to n is defined as
IX,Y; H(X,Y) | T).

Definition 4.5 (Conditional information complexity). The d-error conditional information com-
plexity of f with respect to n, denoted by CIC, s(f ), is defined as the minimum conditional
information cost of a ¢-error protocol for f with respect to #.

Proposition 4.6. Let u be a distribution on X", the set of inputs to f. If n is a mixture of product
distributions on A" x J such that the marginal distribution on A" is u, then 1C, 5(f )= CIC,s(f ).

Proof. Let IT be a protocol whose information cost equals IC, 5( /). Let ((X,Y), T) ~y. Note that
(X,Y)~u. Since II(X,Y) is conditionally independent of 7 given X,Y (because the private
coins of [II are independent of 7), the data processing inequality implies:
1C,5(f) =1(X, Y; II(X,Y)=I(X, Y; II(X,Y) | T)>CIC,s(f). O

Corollary 4.7 (of Propositions 4.3 and 4.6). Let f: 4 —{0,1}, and let n be a mixture of product
distributions on A" x I for some set I . Then Rs(f )=CIC,s(f ).

Remarks. In general, the choice of the random variable T in expressing # as a mixture of product
distributions is not unique. We will choose one where the entropy of 7" is not too large. By a more
precise application of the data processing inequality, it can also be seen that the difference
between IC, (/") and CIC, s( /") is at most H(7'); thus the degradation in the lower bound is not
much as long as 7" has small entropy.
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5. A direct sum theorem for conditional information complexity

We now turn to the development of the direct sum theorem for the conditional information
complexity of decomposable functions. Let IT be a d-error protocol for f: ¥"— {0, 1}, for some
LA x%. Let { be a mixture of product distributions on ¥ x 2, let n = (", and suppose
((X,Y),D) ~n. First, we show that the conditional information cost of the protocol IT with
respect to 1 can be decomposed into information about each of the coordinates. This reduces our
task to proving lower bounds for the coordinate-wise information-theoretic quantities. Next, we
formalize the notion of decomposing a function into primitive functions. By imposing a further
restriction on the input distribution, we then show that each coordinate-wise information quantity
itself is lower bounded by the conditional information complexity of the primitive function. This
will result in the direct sum theorem.

Lemma 5.1 (Information cost decomposition lemma). Let I be a protocol whose inputs belong to
L for some L =X x %. Let { be a mixture of product distributions on ¥ x 9, let n = (", and
suppose ((X,Y),D)~n. Then, I(X,Y; I(X,Y) | D) =3, I(X;, Y;; II(X,Y) | D).

Proof. Abbreviating I1(X,Y) by II, note that by definition, I(X,Y;I1|D)=H(X,Y|D) —
H(X,Y [II,D). Now, observe that H(X,Y | D) = > H(X;, Y; | D), since the pairs (X;,Y;), j&[n],
are independent of each other conditioned on D. By the subadditivity of conditional entropy,
HX, Y [1I,D)<} H(X;, Y; [ 11,D). Thus I(X, Y; [T [ D) >3 I(X;, Y [T | D). O

Definition 5.2 (Decomposable functions). f: ¥"— {0, 1} is g-decomposable with primitive h if it
can be written as f(x,y) = g(h(x1,y,), ..., (Xy,y,)), for some functions i: ¥ —{0,1} and
g:{0,1}"—{0, 1}. Sometimes we simply write /' is decomposable with primitive h.

It is easy to see that set-disjointness is OR-decomposable with primitive AND: DISI(X,y) =
Viep(Xiny;). Here & = {0, 1}, h = AND, g = OR.

Other examples of decomposable functions are the following.

(1) Inner product: Again & = {0,1}* and h is the AND of two bits; ¢ is the XOR of 7 bits.
(2) L., promise problem: Here & = [0,m]*, for some m, h(x,y) =1 if |x—y|>m and 0 if
| x —y| <1; g is the or of n bits.

Now, we would like to lower bound the information about each coordinate by the conditional
information complexity of A, that is, I(X;, Y;; IT | D) > CIC; 5(h), for each j. We achieve this by
presenting, for each j, a family of protocols for 4 that use a protocol II for f as a subroutine, and
whose average conditional information cost with respect to ( is exactly 1(X;,Y;; 11| D). To
facilitate this, we will further restrict the input distribution that we use to be a “collapsing
distribution” for f.
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Definition 5.3 (Embedding). For a vector we ¢”, je[n], and ue ¥, we define EMBED(W, j, u) to be
the n-dimensional vector over %, whose ith component, 1<i<n, is defined as follows:
EMBED(W,j, u)[i] =w; if i#j, and EMBED(W,j,u)[j] =u. (In other words, we replace the jth
component of w by u, and leave the rest intact.)

Definition 5.4 (Collapsing distribution). Suppose f: ¥"—{0,1} is g-decomposable with primi-
tive h: ¥ —{0,1}. We call (x,y)e %" a collapsing input for f, if for every je[n|(u,v)e L",
Jf(EMBED(X, j, 1), EMBED(Y, j, v)) = h(u,v). We call a distribution u on ¥" collapsing for f, if every
(x,y) in the support of u is a collapsing input.

Since our distribution v for set-disjointness never places any mass on the pair (1,1), it
follows that for every (x,y) in the support of u =", and for every je[n], V. ;(x;Ay;) = 0.
Therefore, for every (u,v) € {0, 1}2, DISJ(EMBED(X, /, #), EMBED(Y, j, v)) = u A v, implying that u
is a collapsing distribution for DIsJ.

Informally, a collapsing input (X, y) projects f to / in each coordinate. By fixing one such (x,y),
any protocol IT for f can be used to derive n different protocols for /4: the jth protocol is obtained
by simply running IT on (EMBED(X,/,u), EMBED(Y,/,v)), where (u,v) is the input to the protocol.
Clearly, each of these protocols has the same error as I1. A collapsing distribution allows us to
argue that IT is in fact the “sum” of n protocols for A.

Lemma 5.5 (Reduction lemma). Let Il be a o-error protocol for a decomposable function
| L"—{0,1} with primitive h. Let { be a mixture of product distributions on & x 9, let n = (",
and suppose ((X,Y), D) ~n. If the distribution of (X,Y) is a collapsing distribution for f', then for all
Jen], I(X;, Y; I(X,Y) | D) > CIC; 5(h).

Proof. Let D_; stand for D;,D,,...,D;_,Djiy,...,D,. Since D= (D;,D_;), we have
I(X;, Y;; II(X,Y) | D) = Eq[I(X;, Y;; II(X,Y) | Dj,D_; = d)], where d is indexed by [n]\{/}. We
will show that each term is the conditional information cost with respect to { of a d-error protocol
P;q for h, which will prove the lemma.

Notation. If ((X, Y), D)~{, then let v denote the distribution of (X, Y), and for de 2, let v,
denote the distribution of (X, Y), conditioned on the event {D = d}. Note that v, is a product
distribution. Also, note that v is the distribution of (X, Y), and it is a collapsing distribution for f.

The protocol Pj4 has j and d “hardwired” into it. Suppose (u,v) is the input to P;q. In this
protocol, Alice and Bob will simulate IT(x’,y'), where x’ and y’ are values, respectively, of random
variables X' = X'(u,,d) and Y = Y'(v,/,d), defined as follows. The jth coordinates of X' and Y’
will be constants, defined by X} = u and Y] = v; and for i#j, (X}, Y;) ~v4,. Note that since vy, is a
product distribution, Alice can produce x; and Bob can produce y; independently of each other
using private coin tosses. Now, Alice and Bob simulate IT(x’,y’) and output whatever it outputs.
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Define x and y as follows. For i#/, Xx; = x; and y; =y}, and (x;, y;) is some value in the support
of v. Since (x;,y;), for i#j, are also values in the support of v, it follows that (x,y) is in the support
of v, which is a collapsing distribution for . This implies that (x,y) is a collapsing input for f', so
f(X',y') = f(eEMBED(X, /, u), EMBED(Y, j,v)) = h(u,v). It follows that P;q is a d-error protocol for /.

Let ((U,V),D)~{. The conditional information cost of P;q with respect to ( equals
I(U,V;P;qa(U, V)| D). We will show that the joint distribution of (U, V,D,P;q(U,V)) is
identical to that of (X;,Y;,D;,II(X,Y)) conditioned on the event {D_; = d}. This will imply the
following, which completes the proof.

(U, V;Pia(U, V)| D) =1I(X;,Y; II(X,Y) | D;,D_; = d).

It is easy to see that for any values u, v, and d,

Pr(U=u,V =v,D =d|
= Pr[Xj = u,Y; = v,D; = d]
=PrX;=u,Y,=0,D;=d|D_; =d]
(by independence of X;,Y;, and D; from D_;).

Furthermore, for any transcript 7,

Pr[Pig(U,V)=1|U=u,V =v,D=d]
=Pr[Pig(u,v) =1|U=u,V=0,D=d|
= Pr[P;q(u,v) = 1] (by independence of P;4(u,v) from (U, V,D))
= Pr[l1(X'(u,j,d),Y (v,/,d)) = 1].

Notice that the distribution of (X'(u,/,d),Y'(v,j,d)) is identical to the distribution of (X,Y)
conditioned on the event {X; = u,Y; = v,D_; = d}. Therefore, we have

Pr[Pig(U,V)=1|U=uV =uv,D=d
:PF[H(X,Y) :‘E‘Xj :u,Yj :U,D,j :d]
:PI'[H(X,Y) :’L'|XJ :I/l,Yj :U,Dj:d,D_j :d]

The last equality uses the independence of I1(X,Y) from D;, conditioned on the events {X; = u}
and {Yj = U}. O

Theorem 5.6 (Direct sum theorem). Let f:¥"—{0,1} be a decomposable function with
primitive h. Let { be a mixture of product distributions on ¥ x 9, let n=1{_", and suppose
((X,Y),D)~n. If the distribution of (X,Y) is a collapsing distribution for f, then
CICWS (f ) =n- CIC;& (h)

Proof. Let IT be the optimal d-error protocol for f in terms of conditional information cost with
respect to . If ((X,Y), D) ~#, then we have CIC, 5(f ) = I(X, Y; II(X,Y) | D). By the information
cost decomposition lemma (Lemma 5.1), this is at least > ; I(X;, Y;; I1(X, Y) | D). By the reduction
lemma (Lemma 5.5), this is at least n- CIC;5(h). O
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Corollary 5.7 (of Corollary 4.7, and Theorem 5.6). With the notation and assumptions of Theorem
5.6, Ré(f ) ZCIC,Ms(f ) =n- CIC;(s(h).

For set-disjointness, Rs(D1sJ)>n - 1C;s(AND). Thus it suffices to show an Q(1) lower
bound for the conditional information complexity of the 1-bit function AND with respect
to (.

6. Information complexity lower bound for primitives

The direct sum theorem of the foregoing section effectively recasts the task of proving
randomized communication complexity lower bounds for many functions. Namely, the goal now
is to prove conditional information complexity lower bounds for “primitive functions”, where the
communicating parties are given inputs from a small domain, and wish to check a fairly simple
predicate. In this section, we illustrate how we accomplish this by proving an Q(1) lower bound
for the conditional information complexity of the AND function with respect to the distribution {.
In doing so, we develop some basic connections between communication complexity, statistical
distance measures, and information theory; these connections will be later used in the proofs of
our main results on multi-party set-disjointness and the L., problem. To aid the exposition, we
state and use various Lemmas and Propositions; their proofs are collected in Section 6.1 and
Appendix A.

We will show that for any randomized protocol P that correctly computes the AND function, an
Q(1) lower bound holds on I(U, V;P(U,V)|D), where ((U,V),D)~{(. Recall that we have
Pr[D =0] =Pr[D = 1] = 1/2. We assume that for every input (u,v)e{0, 1}2, the protocol P
computes AND(u, v) correctly with probability at least 1 — §.

Let Z denote a random variable distributed uniformly in {0, 1}. Using the definition of the
distribution { and expanding on values of D, we have

1(U, V3 P(U, V)| D) =} [I(U, V3 P(U, V) | D = 0) + (U, V; P(U, V') | D = 1)]
=3[1(Z; P(0,2)) +1(Z; P(Z,0))] (1)
In the last equality, we use the following facts. Conditioned on the event {D = 0}, U is identically
0, and V is distributed uniformly in {0, 1}; similarly, conditioned on the event {D =1}, V is
identically 0, and U is distributed uniformly in {0, 1}.

Notice that the mutual information quantities in (1) are of the form I(Z; ®(Z)), where Z is
uniformly distributed in {0, 1}, and @(z) is a random variable, for each ze {0, 1}. The next lemma
provides an important passage from such quantities (and hence from information complexity) to
metrics on probability distributions. The advantage of working with a metric is that it allows us
the use of the triangle inequality when needed; furthermore, as will be evident from Lemmas 6.3
and 6.4 later, Hellinger distance turns out to be a natural choice in analyzing distributions of
transcripts of communication protocols.
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Definition 6.1 (Hellinger distance). The Hellinger distance between probability distributions P
and Q on a domain Q is defined by

WP =1- 3 VPO = X (M54 rwiga) ).

we we

(Note: The above equation defines the square of the Hellinger distance.)

For the discussion below, recall our notation that for a random variable @(z) on a set Q, we
write @, to denote the distribution of @(z). The following lemma is proved in Appendix A as
Lemma A.7.

Lemma 6.2. Let &(z,) and ®(z;) be two random variables. Let Z denote a random variable with
uniform distribution in {z),z,}. Suppose ®(z) is independent of Z for each ze{z\,z2}. Then,
I(Z;0(2)) = 0*(2.,, D.,).

Combining (1) and Lemma 6.2, we obtain:
I(U,V; P(U, V)| D)= 1 (h*(Poo, Por) +h*(Poo, Pro)) (Lemma 6.2)
> L(h(Poo, Por) + h(Poo, P1y))* (Cauchy—Schwarz)
> Lh*(Py;, Pyy). (Triangle inequality)

At this point, we have shown that the conditional information cost of P with respect to ( is
bounded from below by hz(Pm,PlO). This leads us to the task of lower bounding the Hellinger
distance between Py; and Pjy. Of the four distributions Py, Py1, P19, and Pj; on the set of possible
transcripts of P, it is natural to expect P to be quite different from the rest since AND(1,1) = 1,
while the value of AND on the other three input pairs is 0. Given that AND(0, 1) and AND(1,0) are
both 0, it is not clear why these two distributions (on the set of possible transcripts of P) should be
far apart. This is where the “rectangular’ nature of the transcripts of communication protocols
comes in. We will show that the transcript distributions on various inputs satisfy two important
properties, which may be considered to be analogs of the following statement about deterministic
communication protocols: if IT(x,y) =t = I (X,)’), then II(x',y) =t = II(x,)).

Lemma 6.3 (Cut-and-paste lemma). For any randomized protocol I1 and for any x,x' €2 and
v,V €Y, h(Ily, Hvy) = h(Ily, I vy).

Lemma 6.4 (Pythagorean lemma). For any randomized protocol Il and for any x,x'€ 2 and
y,yl eX, hz(ny, Hx’y) + hZ(ny/, Hx’y’) <2h2(ny, Hx/y’)'

Note: Lemma 6.4 is not used in the lower bound for AND; it is used only in Section 8.
Lemma 6.3 implies that hz(Pm, Py) = hz(Poo, Pyy), so we have:

I(U,V;P(U,V)| D)= 1h*(Poi, P1o)
:%h2<P00,P11). (Lemma 63)
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The final point is that since AND(0, 0) #AND(1, 1), we expect the distributions Py and Pj; to be
far from each other.

Lemma 6.5. For any d6-error protocol I for a function f, and for any two input pairs (x,y) and
(¥, ") for which £ (x,7) 1 (¥',3'), B (Iy, Tey) > 1 = 2V/5.

We now have:

I(U,V; P(U,V)|D)

1h*(Poo, P11)

%( — 2\/_) (Lemma 6.5)

CIC; 5(aND) >
=

To sum up, we have shown:

Theorem 6.6. Rs(DIs1) > - CICQ()(AND)/“( ENE )

6.1. Statistical structure of randomized communication protocols

We begin with a lemma that formulates the rectangular structure of the distributions on the
transcripts of a randomized communication protocol. This is a probabilistic analog of the
fundamental lemma of communication complexity—the set of inputs that have the same
transcript in a deterministic communication protocol is a combinatorial rectangle.

Lemma 6.7. (1) Let IT be a two-player randomized communication protocol wilh input set ¥ <X x
% let 7 denote the set of possible transcripts of I1. There exist mappings q1: 7 X X —>R, q»: T x
% — R such that for every xe X, ye¥, and for every transcript 1€ 7,

Pr[ll(x,y) = 1] = qi(7;X) - q2(7; ).

(2) Let I be a t-player randomized communication protocol with input set ¥ <X = X1 X --- X
Xy let T denote the set of possible transcripts of I1. Let A, B be a partition of the set of players into
two nonempty sets; denote by 4 4 and Z'g the projections of %” lo the coordinates in A and in B,
respectively. Then, there exist mappings q4: 9 X X 4—-R, qp: T X Xp—R, such that for every
YEX 4,2 X p, and for every transcript 1€ T,

Pr(lI(y,z) = 1] = q4(%;y) - ¢5(7;2).

Proof. We first prove part (1). Recall that by our convention, II is well-defined for every pair
(x,y)eZ x %, regardless of whether it is a legal input (i.e., belongs to ¥ <% x %) or not.

In the proof we use the following ‘‘rectangle” property of deterministic communication
complexity protocols (cf. [KN97], Chapter 1): for any possible transcript T of a deterministic
communication protocol with input sets 2 and %, the set of pairs on which the protocol’s
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transcript equals 7 is a combinatorial rectangle; that is, a set of the form .7 x # where .«/ = % and
B,

In order to apply this property to randomized protocols, we note that a randomized protocol
can be viewed as a deterministic protocol if we augment the inputs of Alice and Bob with their
private random strings. If ¢ and b denote, respectively, the private coin tosses of Alice and Bob,
under this view, the (“‘extended”) input of Alice is (x,a) and that of Bob is (y, ).

For te 7, let /(1) x #(t) be the combinatorial rectangle that corresponds to the transcript t
in the (extended, deterministic) protocol I1. That is, for all (&, a)e.«/(1) and for all (1, ) e #(1)
(and only for such pairs), IT((¢, ), (1, B)) = . For each xe 2, define .o/ (t, x) .o/ (1) by o/ (1, x) =
{(¢&, ) e/ (1) | € = x}, and define Z'(x) to be the set of all pairs of the form (x, o). Similarly, define
#A(t,y) and %(y) for each ye%. Finally define ¢q(t;x)=|</(1,x)|/|Z(x)] and ¢qa(t;y) =
|12(, )|/ 1% (v)]-

Note that on input x, y, Alice chooses a pair (x,a) from Z'(x) uniformly at random, and Bob
chooses a pair (y,b) from #(y) uniformly at random. For any 1€ .7, the transcript of IT would be
7 if and only if (x,a)€.o/(z,x) and (y,b) € #(z, y). Since the choices of @ and b are independent, it
follows that Pr[II(x,y) = 1] = qi1(7; x) - q2(7;»).

The proof for part (2) is by a straightforward reduction to part (1), obtained by letting Alice
and Bob simulate the messages sent by the players in 4 and B, respectively. [

We also formulate a special Markovian property for one-way protocols, which will be used in
the proof for the multi-party set-disjointness in Section 7.

Lemma 6.8 (Markov property of one-way protocols). Let IT be a t-player one-way randomized
communication protocol with input set ¥ <X =X x --- X Zy; let T denote the set of possible
transcripts of II. Let A =[1,k] and B= [k + 1,t] (1<k<t) be a partition of the set of players.
Denote by X 4 and Z'p the projections of X to the coordinates in A and in B, respectively; similarly,
denote by 7 4 and T g the projections of T to the set of messages sent by players in A and in B,
respectively. Then, for each assignment ye % 4 there exists a distribution py on I 4 and for each
assignment 7€ 4 g there exists a probability transition matrix M, on T 4 x T g, such that for every
transcript © = (t4,tp), where 14€7 4, 1€ T p,

Prl1(y,z) = 1] = py(t4) - My(74,78).

Proof. Since IT is a one-way protocol, for any transcript © = (14, 1p), T4 depends only on the
inputs and private coins of players in A4; 15 depends only on 74 and the inputs and private coins of
players in B. Thus, we can write I1(y,z) = (I14(y)), 15(z,I14(y)), where II4 and Il are the
messages sent by players in A and in B, respectively. Therefore,

Pr(lI(y,z) = (t4,78)] = Pr{I14(y) = t4] - Pr{lIp(2,74) = tp [ I14(y) = T4].

Define py to be the distribution of IT,4(y). Since the coins of players in 4 and players in B are
independent, it follows that IT4(y) and IIp(z,74) are independent. We obtain: Pr[I1p(z,74) =
15| I 4(y) = t4] = Pr[lI1g(z,74) = 15]. Define M, to be the matrix whose 74th row describes the
distribution of I1p(z,74). The lemma follows. O
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Remark. Extending the above lemma to general protocols I1, it can be shown that for all inputs
(y,z), there exist a column-stochastic matrix My and a row-stochastic matrix M, such that
Pr[II(y,z) = t] = My(t4,t8) - M,(t4,7p). This is a slightly stronger form of Lemma 6.7.

6.1.1. Proofs of Lemmas 6.3, 6.4, and 6.5
Let IT denote a d-error randomized protocol for a function f on 2" x %. Let x,x' €4 and

v,V €%. We first prove the cut-and-paste lemma, that is, h(ITyy, Tyy) = h(ITyy, I1)).

Proof of Lemma 6.3.
1 —h*(M,, )

— Z VPr[II(x,y) = 1] - Pr{(x', ') = 1]
=> Vo x) - g2(ty) - ai(1X) - qa(x;))  (Lemma 6.7)
= Z VPr[II(x,y') = 7] - Prl (¥, y) = 1]

=1-h*(Il,y,M,,). O

Next we prove the Pythagorean lemma, that is, h? (I, I vy) + h? (g, yy) <2h2(ny, Hyy).

Proof of Lemma 6.4. Using Lemma 6.7, we have

[(1 - hz(waHx/y)) + (1 - hz(ny’vHx’y’))]

N =

:% Y Vi@ x) - gany) - o mY) - e(ny) + Vasx) - eny) g x) - gsy)

- Z ¢2(%;)) J;qz(f;y/) Va1 (t;x) - q1(1;x)

> Vo (uy) - (1y)Va (5 x) ¢t x)  (AM—GM inequality)

=1-h*(Ily,Hyy). O

Finally, we prove Lemma 6.5, that is, h*(IT,,, [T,,,) =1 — 2v/3 if f(x,y) #/(xX,)). The proof
uses the well-known total variation distance between distributions, and its connection to the
Hellinger distance (proved in Appendix A).

Definition 6.9 (Total variation distance). The total variation distance between probability
distributions P and Q on a domain Q is defined by

V(P,Q) = max (P(Q) ~ (@) =3 3 | Plo) ~ Q)]

/
QcQ w0
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Proposition 6.10. If P and Q are distributions on the same domain, then
V(P,Q)<h(P,Q)y/2 - (P, Q).

Proof of Lemma 6.5. Let 7 be the set of all transcripts T on which IT outputs f(x,y) (i.e.,
Iy (t) = f(x,p)). Since IT outputs f(x,y) with probability at least 1 — 9 on (x,y), we have
Pr[lI(x,y)e 7| =1 — ¢; similarly, since IT outputs f(x, y) with probability at most ¢ on (x',)"), we
have Pr[lI(x',)")eZ7|<¢. It follows that V(I yy)>1—20. The lemma follows by an
application of Proposition 6.10. [

7. Multi-party set-disjointness

Let DISY, (X1, ..., X;) = \/;7:l /\lf:1 x; j, where the x;’s are n-bit vectors. Thus, DIS),, is OR-
decomposable, and the induced “‘primitive” functions are all AND,—the #-bit AND. The legal inputs
for AND,; are the all-zero 0, the all-one 1, and the standard unit vectors e; with 1 in the ith
position.?

Theorem 7.1. For any 0<d<1/4, and any 0<e<1,
(1) Ro(pisn) =5+ (1-2v0),

t

2.1n*2
(2) Ré’way(DISJn,,)>%~8 Sn : (1 —2\/5).

Proof. We will employ the direct sum paradigm and define an input distribution for DIsJ,; by
defining the input distribution for AND,.

We will define random variables (U, D) in {0,1}' x [¢], with distribution {, as follows. The
random variable D has uniform distribution on [f]; conditioned on the event {D =i}, U is
uniformly distributed in {0, e;}. If v denotes the distribution of U, it is clear that v" is a collapsing
distribution for D18y, ;. Thus, all we need to prove is a lower bound on the conditional information
complexity of AND, with respect to (.

Let II be any o-error protocol that computes AND,; to keep the notation simple we will suppress
any reference to the private randomness used in II. The conditional information cost of IT with
respect to { is now given by

(U 11(U) | D) = 37 1(U; () | D = i), )

1

3The definition of DISI,,; also requires that 1 be assigned to at most one coordinate; this can be handled via a simple
modification to the direct sum paradigm and will not be described here.
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Notice that conditioned on the event {D = i}, U is uniformly distributed in {0, e;}, so Lemma
6.2 allows us passage to the Hellinger distance. Thus we have

(U 1(U) | D)= 3 W(1m, 1), G)

We will provide lower bounds on the RHS of (3) in terms of hz(HO, I1;). By Lemma 6.5, we

know that h?(ITy, IT;) =1 — 21/5. Part (1) of the Theorem follows from Lemma 7.2, and part (2) of
the Theorem follows from Lemma 7.3. [

Lemma 7.2. Let IT be a randomized t-party communication protocol with inputs from {0,1}'. Then
it (I, Me) = (1/0)h* (o, Iy).

Proof. The lemma is proved by a tree-induction argument. For simplicity of exposition, we
assume that 7 is a power of 2. Let T be a complete binary tree of height log z. We will label the
nodes of the tree as follows. The leaves are labeled 1 through #; each internal node is labeled by the
interval formed by the leaves in the sub-tree below the node. Using this labeling, we uniquely
identify the node of T labeled [a, b] with the -bit input ey, 5, which is the characteristic vector of
the integer interval [a, b] = [7]. It is easy to see that the root is identified with the input 1 and the ¢
leaves of the tree are identified with ey, ..., e;.

The inductive step is to prove the following: for any internal node u in 7 whose children are v
and w, h?(ITy, I1,) <2 - (h*(ITy, I1,,) 4+ h*(ITy, I1,,)).

Suppose u = e[, ), for some a,b, so that v=-e|,, and w = e, where ¢ = [ 442 |. Let 4
denote the set of players [1, ¢] and B denote the set of players [c + 1, #]. Let y be the projection of 0
on the coordinates in 4 and let y’ be the projection of u on the coordinates in 4. Similarly, let z, z’
be the projections of 0 and u on the coordinates in B, respectively. Note that v = y'’z and w = yz'.

The key step in the proof is an analog of the cut-and-paste lemma (Lemma 6.3), applied to -
player protocols, implying that

h(Ily, IT,) = h(Iy,, Iyy) = h(Iyy, Iy,) = h(IL,, I1,). (4)
The correctness of Eq. (4) can be verified analogously to the proof of Lemma 6.3, using part (2) of
Lemma 6.7.

By the triangle inequality, h(I1,, I1,,) <h(Ily, II,) + h(Ily, I1,,), which by the Cauchy-Schwarz
inequality is at most (2- (h>(Ily,I1,) + h*(ITy, I1,,))))"/?. Substituting in Eq.(4), we obtain
h?(ITy, I1,) <2 - (h*(Iy, I1,) + h*(ITy, I1,,))). The lemma follows. [

Lemma 7.3. Let Il be a randomized t-party one-way communication protocol with inputs from
{0,1}'. Then, for any 0<e<1,

In“ 2)e
th (ITy, 11, (8t£) -h%(Iy, Iy).

The main idea in the proof of Lemma 7.3 is to exploit the Markovian structure of transcript
distributions that arise in one-way protocols, captured by Lemma 6.8. To obtain the bound in the
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lemma, we use Rényi divergences, which are generalizations of the Hellinger distance. This makes
the proof technically tedious, and therefore we defer it to Appendix B. Here we prove a weaker
version of the lemma, which still conveys the main ideas needed to obtain the stronger bound.

This weaker version yields a lower bound of (n/1'*¢)- (1 —2\/3) on R;_Way(DISJ,,v,), where
' ~0.77155.

Lemma 7.4. Let Il be a randomized t-party one-way communication protocol with inputs from
{0, 1Y, Then, S0, h2(ITy, I1e,) = (1 Y02 (g, ITy), where ¢ = 10g2(1 n %) ~0.77155.
Proof. The proof is similar to that of Lemma 7.2, where the inductive step is now the following:
for any internal node u in 7 whose children are v and w, h*(Iy, IT,) < (1 + 1/v2) (h*(Iy, I1,) +
h’(Mly, 11,,)).

Suppose u = e[, ), v = €[y, and w = e[, 1 ), Where ¢ = L#J Define the sets of players 4, B and
the input assignments y,y’,z,z’ as before. Recall that 0 =yz, u =y'z, v =y'z, and w=yz'. A
crucial step is to rewrite Iy, IT,,IT,, and II,, by applying the Markov property of one-way
protocols (Lemma 6.8).

Notation. For a probability vector p on 2 and a probability transition matrix M on Q x I', let
poM denote the distribution on Q x I' where (poM)(i,j) = p(i) - M(i,j ).
Applying Lemma 6.8 to Iy, I1,, II,, and II,,, we have

H() = Hyz :pyOMb Hu = Hy/z/ :py/o 7
HU = Hy’z :pyIOMZ, HW = Hyz’ :pyoMZ/7

where py and py are probability vectors, and M, and M, are probability transition matrices. To
complete the proof, we will show

1
hz(pyO z’py’ojuz’)< (1 =+ ) ) (hz(pyo zvpy’OMz) + hz(pyo z’pyOMz’))'

V2

This follows from the lemma below, which is a general property of the Hellinger distance. [J

Lemma 7.5. Let p,q be probability distributions on Q, and let M, N be probability transition
matrices on Q x I', for some Q and I'. Then

h?(poM,qoN)< <1 + \%) - (h*(poM, goM) + h?*(poM, poN)).

Proof. Let a,b be any two probability distributions on Q, and C,D be any two probability
transition matrices on 2 x I'. Let C; and D; denote the ith row of C and D, respectively (note that
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the rows of C and D are distributions). We have:

hz(aoC, bOD) =1- Z \/Cl,'C,'jb[D,‘j =1- Z \ a,-b,- Z CUDU

ieQ, jel’ ieQ jer
=1—- Z \/ Cll‘bl‘<1 — hz(Ci,Di)> = hz(a,b) + Z hz(Ci,D,‘)\/ aibl-.
ieQ ieQ

Define f; to be the squared Hellinger distance between the ith row of M and the ith row of N.
Using the above observation, we can write the three (squared) Hellinger distances as follows:
hz(poM,qu) = hz(pvq) +Zie!2 ﬂi\/pi(ﬁa hz(ponqoM) :hz(pa Q)’ and hz(pOM’pON) =
ZieQPiﬁi-

Set y = 1/4/2. After minor rearrangement, it suffices to prove:
2 _ Di + qi
> Bi(vpigi — (1 +p)p) <y (pog) =7 D 5 ) — Vi |-
ieQ ieQ

We will prove the inequality pointwise, that is, for each ie Q. Since ;<1 and since the ith term in
the right-hand side is always non-negative, it is enough to show

Vo — (1 +v)pi<v((pi;qi) N m)'

This is equivalent to showing p;(1 + 37/2) + ¢i(y/2) — (1 + y)/piqi =0, which is true since the
LHS is the square of the quantity (/p:(1 +37/2) — \/4i(y/2)) (recall that y = 1/v2). O

8. L, distance

In the L., promise problem, Alice and Bob are given, respectively, two n-dimensional vectors, x
and y from [0,m]" with the following promise: either |x; —y,/<1 for all i, or for some i, |x; —
y;|=m. The function L, (x,y) = 1 if and only if the latter case holds.

Theorem 8.1. For 0<o<1/4,

R(;(LOO)>4LmZ- (1 —2\/3).

Proof. Note that L, is orR-decomposable, since L., (X,y) = \/; DIST(X;,y;), where DIST(x,y) = 1,
if [x — y|=m and pisT(x,y) =0 if |x — y|<1.

We will once again use the direct sum paradigm. Define the random variable ((X, Y), D) with
values in [0,m]* x ([0,m] x {0,1}), with distribution {, as follows. The random variable D is
uniformly distributed in ([0, m] x {0, 1})\{(0,1), (m,0)}. If D= (d,0), then X =d and Y is
uniformly distributed in {d,d + 1}; if D = (d, 1), then Y = d and X is uniformly distributed in
{d —1,d}. It is easy to see that X and Y are independent, conditioned on D. Let v denote the
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distribution of (X, Y). Since pisT(x,y) =0 for all values (x,y) of (X,Y), it follows v* is a
collapsing distribution for L.,. The theorem follows by applying Lemma 8.2 given below. [

Lemma 8.2. For any 0<o<1/4,
1
> —
CIC; 5(DIST) > >3 ( 276 )

Proof. Let II be any J-error protocol for DIST whose conditional information cost with respect to
{ is CIC; 5(p1sT), and let U, denote a random variable with uniform distribution in {d,d + 1}. By
expanding on values of D, it can be shown that

m—1 m

1
CICLg(DIST) :%<Z I(Ud, d Ud +Z U, 1, Ud 1,d))>

d—0
Therefore,

1 m
CIC P DIST (Z chZ,Hd,d+1) + Z hz(ﬂd_hd,ndd)) (by Lemma 6.2)
=0 d=1

2

1 -1 m

4m2< h Hyq, I ga41) + Z h(Ud—l,d,Hdd)> (Cauchy—Schwarz)
= =

4 h (IToo, I1,). (Triangle inequality).

We cannot directly bound h? (IToo, M ) from below, because DIST is 0 on both inputs. However,
by Lemma 6.4, we have that hz(HOO,Hmm) 2% (hz(Hoo,Hmo) + hZ(H()m,Hmm)), which, by Lemma
6.5, is at least 1 —2v/5. O
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Appendix A. Measures of information and statistical differences

Definition A.1 (Statistical distance measures). Let P and Q be two distributions on the same
probability space Q. The total variation distance V, the Hellinger distance h, the Kullback—Leibler

divergence KL, the Jensen—Shannon divergence D, and the Rényi divergence D, (0<o<1) between
P and Q are deﬁned as follows:

Z | P(w) = Q(w)] = max | P(2) — Q(2)],

weQ
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wr.0- (1-3; vreow) - (15 (v - vaw) )

KL(P|| Q) = Z( Jiog 52
-4 ol
DOC(P,Q)zl—;;2 P(w)

While V(-, -) and h(-,-) are metrics, KL(- || ), D(+, ), and D,(+,-) are not. However, they are
always non-negative and equal 0 if and only if P = Q. The Rényi divergence is a generalization of

the Hellinger distance: D; (P, Q) = h*(P, Q).
2

Proposition A.2 (Proposition 6.10 restated; Le Cam and Yang [LY90]). If P and Q are
distributions on the same domain, then V(P, Q)<h(P, Q)1/2 — h*(P, Q).

Proposition A.3.
Va<f, g D(P,Q)<Du(P,0)< =

(P, Q).

Proof. We use Holder’s inequality (for vectors u,v, and for p,q that satisfy 1/p+1/¢q =1,
|[<u,v)|<||w, - [[¥]],) with p = B/ and ¢ = B/ (B — o)
- Dz(Pa Q)
=3 P0)" Q) =" P(w) Q)™ 0(w)' ™"

/P (B—2)/p
< (Z (P(w)“Q(w)“/ﬂ_“)ﬁ/“> (Z (Q(w)l—a/ﬁ)ﬁ/(ﬁ—“)>

w (&)

/B
= (Z P(w)ﬁQ(w)l_ﬁ> -(Z Q(w)>

]

= (1 - Dy(P, Q)"

We now use the following simple analytic claim:

(B=o)/B

Claim A.4. For any 0<¢,0<1 (excluding the case ¢ =1 and 6 = 0), (1 — 8)5<1 — Je.
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Proof. The cases 6 = 0,1 are trivial. So assume 0€(0,1) and consider the function f(¢) =
1 —de—(1— 3)5. We need to show f is non-negative in the interval [0, 1]. Taking the derivative of
f,wehave: f/(¢) = 6(1/(1 —&)' ™ — 1);since 1 —¢<1and 1 — 8>0, f'(¢) >0. Therefore, / is non-
decreasing in the interval [0, 1], implying its minimum is obtained at ¢ = 0. Since f(0) = 0, we have
that f(¢) >0 for all e€[0,1]. O

Since both Dg(P, Q) and a/f are in the interval [0, 1] (and «/f>0), we obtain the left inequality:

1 —D,(P,0)<(1 - Dy(P,0))"! <1 —% . Dy(P, Q).

For the other direction, note that Dg(P, Q) = D;_g(Q, P), by definition. Therefore, using the first
direction,
1-p 1-p

D/j(P, Q):leﬁ(QaP)Zlefd(QaP) :mDa(P7 Q) U

Proposition A.5 (Lin [Lin91]). For distributions P and Q on the same domain, D(P, Q)>h*(P, Q).

The next proposition is used crucially in all our proofs to rephrase mutual information
quantities in terms of the Jensen—Shannon divergence, which then allows us, via Proposition A.S5,
the use of the Hellinger distance or the Rényi divergences.

Proposition A.6. Let @(zy) and &(z,) be two random variables. Let Z denote a random variable with
uniform distribution in {zi,z,}. Suppose ®(z) is independent of Z for each ze{z\,z2}. Then,

1(Z;®9(Z)) = D(®.,,.,).
Proof. The mutual information between two random variables X and Y can be written as follows
(cf. [CTI1)):

Y =y| X = Xx]
Priy =y '

P
I(X;Y)=> Pr(X=x]) Pr[¥=y|X=x]log
xed yew

where 2 and % denote the supports of the distributions of X and Y, respectively.

Let u denote the distribution of Y, and for any xe %, let u, denote the distribution of Y
conditioned on the event {X = x}. Then the above equation can be rewritten using KL-
divergence:

IX;¥) = 3 PrlX =] - KL(i, || ) (A1)

xe&

For the proof, we set X = Z and Y = &(Z). For each ze{z},z,}, ®(z) is independent of Z;
therefore, conditioned on the event {Z = z}, the distribution of &(Z) equals ¢.. Moreover,
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because Z is uniformly distributed in {z;,z,}, we have &(Z)~(®., + @.,)/2. By Eq. (A.1),

b, + P, —
;> —D(®.,,5.,). O

I(Z;9(Z2))= > PriZz=1] -KL((DZ

7=z1,2

Finally, we state the lemma that we use in the proofs of information complexity lower bounds
of primitive functions; the lemma follows directly from Propositions A.6 and A.5.

Lemma A.7 (Lemma 6.2 restated). Let ®(z;) and ®(z,) be two random variables. Let Z denote a
random variable with uniform distribution in {z,,z,}. Suppose ®(z) is independent of Z for each

ze{z1,2}. Then, 1(Z; ®(Z))=h*(®.,, D.,).

Appendix B. Proof of Lemma 7.3

Lemma B.1 (Lemma 7.3 restated). Let I be a randomized t-party one-way communication
protocol with inputs from {0,1}'. Then, for any 0<e<1,

! In?2)e?
> h2(H0,He,~)>( 818) -h*(My, IT1).
i=1

Proof. In the proof we employ Rényi divergences D, [Rén60] (see Appendix A for the definition)
and as we remarked earlier, this proof will be a generalization of the proof of Lemma 7.4. By
Proposition A.3, we have for 1/2<a <1 and distributions P and Q on the same domain,

1 ) 1
3o < Q) Sy Pall, Q). .
35 Do(P. Q) <I(P. Q) <57 Du(P.0) (B.1)
We fix o = a(e) to be chosen later. Using 6, we have:

t 1 t

W2 (Mg, ) >— -y D,(Ily, I, B.2
izzl ( 0, e,) 20{ IZZ] ( 0, el)a ( )
D, (ITy, ITy)>2(1 — o) - h* ([, ITy). (B.3)

It would thus suffice to prove the following counterpart of Lemma 7.2 for the Rényi divergence.

Lemma B.2. For any one-way protocol Il, for any 0<e<1, if a =1 —7%/(4(1 +7)), where y =
20 — 1, then Y.i_ Dy(Iy, II.,) = (1/£5)D,(Iy, Iy).

Assuming Lemma B.2, we will complete the proof of Lemma 7.3. By (B.2) and (B.3) and using
Lemma B.2,

[ _
ST Ry, )2
i=1

» E

h?(ITy, ITy).
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By our choice of «,
2

= o= =
o 4(1 +7)
Since y = 2° — 1>¢In 2, we have 7?/8>(¢2In”2)/8, and Lemma 7.3 follows. [

1 —«a Y Y
1 —.
8

Proof of Lemma B.2. The proof goes along the same lines of the proof of Lemma 7.2, with
Hellinger distance replaced by the Rényi divergence. The inductive step is the following. Let u be
any internal node in 7 and let v and w be its left child and right child, respectively. Then,
Dot(H(b Hu) < (1 + V) ' (Doz(H(b Hv) + Da(Hm Hw))-

Similar to the proof of Lemma 7.2, suppose u = e[, 5], 0 = €[, and w = e[y, Where ¢ =
| <52 |. Define the sets of players 4, B and the input assignments y,y',z,z’ as before. Recall that
0=yz, u=y7,v=yz and w = yz.

For a probability vector p on Q and a probability transition matrix M on Q2 x I', let poM denote
the distribution on Q x I" where (poM)(i,j ) = p(i) - M (i,j ). Applying Lemma 6.8, we have ITy =
Ily, = pyeM,, I, =y, = pyoMy, I, = Ily, = pyoM,, and II,, = Ily, = pyoM,. The lemma
now follows from the following property of the Rényi divergence, whose proof uses convexity and
analytical arguments. [

Lemma B.3. Let p,q be probability distributions on Q, and let M, N be probability transition
matrices on Q x I', for some Q and I'. For any y>0, if a=1—9%/(4(1 + 7)), then

Dy(poM,qoN)<(1+7y) - (Dy(peM,qoM) + D,(poM,p-N)).

Proof of Lemma B.3. We define f3; to be the Rényi a-divergence between the ith row of M and the
ith row of N. Similar to the proof of Lemma 7.4, we can rewrite the three Rényi divergences as:

D“(pOM’ qON) = D‘“(p’ q) + Zieﬁp?qgixﬁiv Dt%(poMa qOM) = Dot(pa Q), and Da(POM,poN) =
> icoPifi- Thus, what we need to prove is:

D.(p,q)+ Y pia; "Bi<(1+7)- (Dz(p, RS piﬂ,-)

ieQ ieQ
=3 <y Dalpg) + (147 (z o )
ieQ ieQ
<> Bipia " — (1+9)p) <7 Dulp, q)-
ieQ

Let us denote by Q the set of all ie Q, for which p#q! > (1 + y)p:. Let Q, = Q\Q. Since B;<1,
then

> Bipial = A+ 9)p)< > pigl = (1+7)pi.

ieQ e
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Thus, it suffices to prove:

> lai = (1+9)pi) <7 Dy(p,q)-

iEQl

Substituting D, (p,q) = 1 — >_,.o p%q}~* in the RHS of the above inequality and rearranging the
terms, we need to show that

ST+t + > wia =)0 (L+)pi<y. (B.4)
ieQ ie ieQ

We note the following convexity property of the function f(x,y) = x*y'

Claim B.4. For any non-negative numbers xi, ..., Xp, Vi, «++, Y,
n o n 1—o
i=1 i=1

The proof follows directly from an application of Holder’s inequality.
Definez =), piand w =}, o ¢;- Applying Claim B.4 in Eq. (B.4), it suffices to prove the
following:
(T49) -2 % 4y (1 —2)*(1 —w)' ™ = (1 4+ 9)z — y<0. (B.5)

This inequality is shown to be true using analytic tools in Lemma B.5 below. This completes the
proof. [

Lemma B.5. Let 0<z,w<1 be real numbers, and y be any non-negative real number. Then,
(I+7) 2w ™ 4y (1 =2 (1 =w) ™ = (1 479)z = y<0,
provided o =1 —y?/(4(1 +7)).

Proof. Define f,(z, w) to be the left-hand-side of (B.5). For any given value of z we will maximize
fx(z,w) as a function of w and show that this maximum is less than 0, if o satisfies the bound given
in the statement of the lemma. For simplicity of notation, we denote: a = (1 + y)z*, b = p(1 — z)*

and 6 = 1 — . We thus have: f;.(w) = aw® + b(1 —w)° — (1 +7)z — 7.

dfo: o 51 o1
=aow’"" —bo(l — .
dw (1=w)
Thus, the extremal point is at:
. al/(1-9)
w

= 1/(1=8) 4 pl/i-o)

This point is a maximum in the interval [0, 1], since

d*f,.

S5 =ad(0 - w2 + b5(5 — 1)(1 — w)° 2 <0.
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Thus the value at the maximum point is:

41/(1-9) pl/(1-8) 1
o,z ") = od N - + -
Sz (W) (@109 1 BUI-0) | (/1= 1 p1/(1-0))? (472 =7
— (al/(lf(‘}) + bl/(17(5))1*5 _ (1 +V)Z —

=((1+9)" 2491 = 2)) = (1 +9)z - 7.

We want this maximum to be non-positive for every ze|0, 1]. That is,
(L4 9)"z 491 = 2)) < (L +9)z 47
(L4240 = 1+ 2 =51 - 2)>0. (B.6)

Let g,(z) be the left-hand side of (B.6), and for simplicity of notation, let / = 1/a. We would like
to show that for an appropriate choice of «, g,(z) >0 for all ze |0, 1]. Note that ¢,(0) = 0. Thus, it
suffices to show that g is non-decreasing in the interval [0, 1].

J@) =+ +)z+79) " = A+ +y =+ =1 +9) +7,

where the last inequality follows from the fact z>=0. Thus g would be non-decreasing if:

/-1 /
L1497 = (149) +9/20 /<—V> —1+<V>>o
(L™ = (L9 #9720 = A T

Write 7 = y/(1 4+ y). Note that 0 <y <1. We thus need to prove:

W+t =120 < ' p+4)—1=0

, 1
/-1 /1
<~ 1+79n)—-1=20 = >—
n( ") n T+7

Since n<1, 1/(1 +#5)<e 2. Thus it suffices that:

17/7126717/2 < /- lgL

2In(1/n)

Therefore, we need o = 1/ to satisfy

1

o=
U awim
Thus, it suffices that

n v

T 4n(1/n) 41 +7) In((1+7)/7)

=1
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And for the last inequality to hold it suffices that

a=1—
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